Fabrication of a label-free electrochemical immunosensor of low-density lipoprotein.
نویسندگان
چکیده
The silver chloride@polyaniline (PANI) core-shell nanocomposites (AgCl@PANI) combined with Au nanoparticles (AuNPs) were used to prepare the AuNPs-AgCl@PANI hybrid material. A novel sensitive label-free low-density lipoprotein (LDL) electrochemical biosensor was fabricated by adsorption of antibody to apolipoprotein B-100 (aopB-100) on an AuNPs-AgCl@PANI-modified glassy carbon (GC) electrode. The hybrid material could provide surface for high antibody loading due to its large surface-to-volume ratio. Since each LDL has an apoB-100 on its phospholipids coat, they could be bonded to the electrode surface through the specific antibody-antigen reaction. Electrochemical impedance spectroscopy (EIS) was used to characterize the recognition of LDL. The negative charges carried by LDL phospholipids coat would block the electron transfer of the [Fe(CN)6]3-/4- redox couple severely. In addition, the conductivity of LDL is very poor, so small amounts of LDL on the electrode could result in great change in the electron-transfer resistance (Ret). The biosensor exhibited a highly sensitive response to LDL with a detection limit of 0.34 pg/mL, and some factors that would affect the performance of the biosensor were studied, such as incubation time and temperature.
منابع مشابه
Fabrication of an Electrochemical Immunosensor for Determination of Human Chorionic Gonadotropin Based on PtNPs/Cysteamine/AgNPs as an Efficient Interface
An ultrasensitive electrochemical immunosensor for the detection of tumor marker human chorionic gonadotropin (hCG) was developed with a limit of detection as low as 2 pg mL-1 in phosphate buffer. The Platinum nanoparticles (PtNPs) were electrodeposited to modify the gold surface and to increase enlarging the electrochemically active sites, resulting in the facilitation of electron exchange. Cy...
متن کاملUsing Boehmite Nanoparticles as an Undercoat, and Riboflavin as a Redox Probe for Immunosensor Designing: Ultrasensitive Detection of Hepatitis C Virus Core Antigen
In this study a label-free electrochemical Immunosensor for ultrasensitive detection of Hepatitis C virus core antigen in serum samples was fabricated by using a simple approach. In this method a low-cost and sensitive immunosensor was fabricated based on a boehmite nanoparticles (BNPs) modified glassy carbon. The BNPs provide a specific platform with increased surface area which is capable of ...
متن کاملFabrication of SrTiO3 Layer on Pt Electrode for Label-Free Capacitive Biosensors
Due to their interesting ferroelectric, conductive and dielectric properties, in recent years, perovskite-structured materials have begun to attract increasing interest in the biosensing field. In this study, a strontium titanate perovskite layer (SrTiO₃) has been synthesized on a platinum electrode and exploited for the development of an impedimetric label-free immunosensor for Escherichia col...
متن کاملLabel-free electrochemical immunosensor based on enhanced signal amplification between Au@Pd and CoFe2O4/graphene nanohybrid
The improvement of sensitivity of electrochemical immunosensor can be achieved via two approaches: increasing loading capacities of antibody and enlarging responding electrochemical signals. Based on these, CoFe2O4/graphene nanohybrid (CoFe2O4/rGO) as support was firstly used for preparing electrochemical biosensor, and with the addition of Au@Pd nanorods (NRs) as mimic enzyme, a label-free ele...
متن کاملطراحی ایمونوسنسور الکتروشیمیایی بر اساس نانو ذره طلا بهعنوان نشان و نانو کامپوزیت حاوی مواد کریستالی متحرک و پلی وینیل الکل
Background: In this study, using anti-human serum albumin (HSA)-conjugated gold nanoparticles (AuNPs) as an electrochemical label and mobile crystalline material-41 (MCM-41)–polyvinyl alcohol (PVA) mesoporous nanocomposite as an immobilization platform, a new immunosensor was established. Methods: Field emission scanning electron microscopy (FESEM), cyclic voltammetry (CV), and diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 112 4 شماره
صفحات -
تاریخ انتشار 2008